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1. INTRODUCTION

This report describes the work performed under Contract DAAHO1-82-C-0519,
"Tactical Missile Base Flow," which addresses Task II of Technical Requirement
0119, of October 21, 1980. The purpose of the Task II effort is to investi-
gate the feasibility of applying advanced Navier-Stokes numerical simulation
techniques to the complex flow that develops near the base of a jet-propelled
tactical missile or a rocket-assisted artillery projectile. This complex
flow has been analyzed in the past with the help of ad-hoc "component" models,
which provide relatively low-cost, approximate solutions for engineering pur-
poses [Anon. (1969)]. The rapid gains being made in numerical modeling based
on the Navier-Stokes equations, together with dropping costs of computer
utilization, lead naturally to attempting the application of these techniques
to the base flow problem. Specifically, successful computations of base flow
with simulated jet (modeled by a solid body of appropriate shape) made at the
NASA Ames Research Center [Deiwert (1981), (1982)] represent a leading step in
this direction, and open the way to numerical simulation of the fully coupled
near wake with gas jet.

The technical challenge is posed by the complexity of the base flow, which
involves the interaction between an underexpanded propulsive jet and the
recirculating flow in the near wake. In turn, the wake flow may affect the
afterbody flow, causing separation of the boundary layer near the missile
base, depending on the shape of the body and the base pressure that develops
as a result of the jet-wake interaction./ For almost all applications, tur-
bulent flow develops in the shear layers that separate the jet, the recir-
culating base flow, and the free stream.

The approach adopted to meet this challenge consisted of restricting the
first attempt to axisymmetric flow with a cold propulsive jet of the same gas
as the free stream (both gases being thermally and calorically perfect), and
using the Lockheed Viscous Implicit Solver (LVIS), a Navier-Stokes computer
code already tested in a number of other applications [see Reklis, et. al.
(1983)]. The effort concentrated on adding to LVIS the capability to treat
the base region (i.e., to work with an L-shaped computational domain), and to
incorporate two different turbulence models, of the so-called "two-equation"
type, namely the k-epsilon and the k-W models (see, for instance, (Launder and
Spalding (1972)1). Validation of numerical simulations is always an important
aspect of their application to practical problems, and in this respect the
approach adopted was to establish a "sealed envelope" test, according to which
the code would be applied in a true predictive fashion to wind-tunnel tests
performed at AEDC, the results of which would be unavailable to the contractor
performing the numerical simulation. Thus, the LVIS code was modified as
required, and applied to the specific AEDC test conditions, using both the k-
epsilon and k-W turbulence models. Comparison of these results with the AEDC
experimental data will be performed by MICOM, and the conclusions from this
exercise will be forthcoming.

This final report includes the equations and boundary conditions used in

the computer code (Section 2), the numerical solution technique (Section 3),
and a description of the results of the numerical simulation computer runs
made with the k-epsilon and k-W turbulence models (Section 4). The detailed
data from the numerical simulations are available in magnetic tape. The
instructions for using the computer code are given in a Users Manual that is
contained in a separate volume.



2. EQUATION AND BOUNDARY CONDITIONS

2.1 Governing Equations

2.1.1 Flow Equations. The turbulent flow over the forebody and in the
base region is assumed to be governed by the classical Navier-Stokes equations
with effective values of viscosity and thermal conductivity that are the sum
of laminar and turbulent contributions

= P + (2.1a)

K A + Pt (2.1b)
Cp Prl Prt

where p denotes the viscosity, K the thermal conductivity, Cp the heat capac-
ity, Pr the Prandtl number, and the subscripts 1 and t refer to molecular
(laminar) and turbulent quantities, respectively. In the present work, the
eddy viscosity pt is obtained from either one of two multi-equation turbulence
models, and the turbulent Prandtl number is assumed to be a constant.

The numerical solution to the described Navier-Stokes equations is carried
out in a general curvilinear coordinate system. The curvilinear coordinate N
transformations and equations can be found in [Pulliam and Steger (1980) or in
Thomas and Lombard (1970)]. The simplification of the equations for axisym-
metric flow is described by [Nietubicz, et al., 1979]. In the present work,
the full set of viscous terms are retained (see, for example, (Thomas (July,
1979)], including the cross-derivative terms; whereas, these terms were
omitted in (Pulliam and Steger (1980)] and in [Nietubicz, et al. (1979)].

2.1.2 Turbulence Model Equations. In high Reynolds number flow regions
away from walls, we employ a generalized two-equation turbulence model that 4
embodies both the uncorrected k-epsilon model [Jones and Launder (1972),
Launder and Spalding (1972), and Mace, et al., 1981] and the k-W model
[Launder and Spalding (1972) and Spalding (1972)]. I..

The generalized model equations in dimensionless form are

-1

(pk)t + V'PVk - Re V'(DkVk) - Sk S

k-P [vt'O - CDk k0krDj(2.2a)

(.pr) t + 7-*pr - ReI 7.(Drvr) w sr (2.2b)

Pr r (D + c k r (V )2 - C rk p r]

2
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where k denotes the turbulent kinetic energy (T.K.E.), r represents the second
turbulence modl parameter (epsilon or W), Dk and Dr are diffusion coeffi-
cients defined in terms of the molecular and eddy viscosities -rd "exchange
coefficients" a that are empirical constants

Dk - + 9k (2.3a)

p

Pt
Dr - pI + - (2.3b)

and where p is the density, V is the flow velocity, D is the classical dissi-
pation function, which can be represented in Cartesian tensor notation as

= ui + u

W J= ]V ]is the magnitude of the vorticity vector, vt is a Reynolds number-

scaled turbulent kinematic viscosity

Vt - C V km" rv (2.4)

and the eddy viscosity is given by

pt= Re p Vt (2.5)
V.

All quantities in the above equations are dimensionless, with velocity,
distance, density, and viscosity normalized by some reference value for each,
time non-dimensionalized by the ratio of reference length to reference veloc-
ity, turbulent kinetic energy normalized by the square of the reference veloc-
ity, r non-dimensionalized by the appropriate combination of reference length
and velocity, and the Reynolds number Re is formed from the reference values
of density, velocity, length, and viscosity. The reference conditions used in
the present baseflow analysis are the freestream speed of sound, density,
viscosity, temperature, and pressure; and the exit radius of the nozzle (see
also Section 4).

The remaining coefficients and exponents in the foregoing turbulence model
equations are constants. Dimensional analysis determines uniquely the values
of the exponents in terms of the dimensions of the second turbulence parameter,
r. If we represent the latter's dimensions in units of length L and the time
T follows

3



Lr n- T

then the appropriate values for the two turbulence models are

k-epsilon Model: n -2, m - -3 (2.6)

k-W Model: n - 0, m - -2

and the various exponents a, $ in Eq's (2.2)-(2.5) are given by

n+2m B 1
V 2(n+m) V " (2.7a)

3n+2m 1
IN 2(n+m) PDk - nm (2.7b)

nr n+2,

, n+2m Id
pr 2(n+m) p nI..7

n 11' "2(n+) - (2.7e)
2(n~m)n+m

Table 2.1 gives the values of the remaining constants in Eq's (2.2)-(2.5)
for which those equations reproduce either the k-epsilon or the k-W turbulence p,

model equations. For reference, the table also indicates the equivalent nota-
tion that normally has been used for the coefficients in previous work dealing
with either turbulence model. For example, the symbol Cl previously has been
used in the k-W model literature to denote C'pr, the empirical coefficient
of (Vw)2 in the second production term on the R.H.S. of Eq. (2.2b).

The turbulence model equations (2.2)-(2.5) apply only in high Reynolds
number flow regions far from walls. In low-speed flow regions, such as within
the boundary layers on the missile side wall and on the solid part of the base,
one either must add further "wall correction" terms to the model equations, or
must employ some other near-wall turbulence model. Several investigators have
introduced "wall correction" terms into the k-epsilon model equations and
applied the expanded models successfully to simple boundary layer flows [Jones
and Launder (1972), Chien (1982)]. However, the behavior of such correction
terms has yet to be investigated for complex flows with vortices, embedded
shock waves, etc. Therefore, we have elected to follow the approach of
[Arora, et al., (1982)], who used an algebraic mixing length model for the
eddy viscosity i. the near-wall region of the boundary layers, and who applied
the turbulence model equations (2.2)-(2.5) only outside this region.

4
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Table 2.1 -'

Constants in Generalized Turbulence Model Equations (2.1) - (2.5)

k-epsilon Model k-W Model
(Mace. et al (1981)) [Spalding (1972))

Value of Corresponding Value of Corresponding
Constant Constant Symbol Constant Symbol

C 0.09 C 1.0 -
v D

0.09 C I 1.0
Pk 0

C 1.0 --- 0.09 C
Dk D

C 0.1296 C C 1.48 C
Pr D 1 3

C 0.0 --- 3.5 C
Pr 1

C 1.92 C 0.17 C
Dr 2 2

.p..

o 1.0 o0.9 -,
k 1.k k ,

a 1.3 a 0.9

2 --- "
v

S-1 -1/2--
v

Pr 0.9 --- 0.86
t



For smooth walls [Arora, et al. (1982)] use the van Driest eddy viscosity
formulation

Vt - (0.4 Dy) 2 1112 (2.8)

D 1 - exp(-E)

where y is the distance normal to the wall. For generality, we have employed

the square root of the dissipation function D/2 instead of the wall-normal
gradient of tangential velocity as used in [Arora, et al. (1982)]; the two
become equal in the neighborhood of a wall.

in [Arora, et al. (1982)], the exponent E of the damping factor D is given
by

yE ' y pc-- (2.9)

A+  /v+ ( 2ww1)1/2

where y+ is the distance from the wall, normalized by the viscous length
scale, which is defined as the ratio of the kinematic viscosity at the wall to

the friction velocity; r is the local shear stress, and A+ is the damping
constant.

An alternative expression is the formula used for the inner near-wall
region in the Baldwin-Lomax algebraic turbulence model [Baldwin and Lomax
(1978)]

=/y Re 
(2.10)

A+ A+

In the present work, as in [Arora, et al.,(19 82 )], the edge of the inner
region is to be positioned just outside the laminar sublayer, y+ 15.
Boundary conditions for the two turbulence model parameters at this edge are
obtained from the dual condition that the eddy viscosity must be continuous
across the edge, and that the turbulent kinetic energy k is assumed to be in
local equilibrium. The continuity condition gives one equation between k and
r at the inner region edge by equating the two expressions (2.4) and (2.8) for
VT and the local equilibrium condition yields a second equation by setting
equal to zero the source term Sk on the R.H.S. of the T.K.E. Equation (2.2a).

A general three-dimensional coordinate transformation is applied to the
unsteady Navier-Stokes equations [Thomas and Lombard (1979)] and the trans-
formed equations are simplified for axisysmmetric flow [Nietubicz, et al.,
(1979)]. The same transformations and simplifications are applied to the tur-
bulence model Equations (2.2) - (2.10). If we represent the transformation in
the form

6



x9 y, z, C---9 A

with -r - t, and take n as the meridional angle in axisymmetric geometry, then
the transformed turbulence model equations can be written in vector form as

+ ( .v~] +[J'.V)QC-R'D+D- (2.11a)

-Re-I L J+ R[,.

(k j" J k r) (2.11b)

D1 = (702D D2 - (VC)2D D3 - (V&.V7i)D (2.11c)

and where J - b(x,y,z)/5( ,, n,C) is the Jacobian of the inverse transformation,
and D is a diagonal diffusion coefficient matrix

Dk M
o)

Dr (2.11d)

,1

7
A



f . * t . .. ... ... . ........... : J __ ..

3. NUMERICAL SOLUTION TECHNIQUE

The numerical solution to the described equations is carried out using the
Beam-Warming time-linearized implicit approximate-factorization (ADI) scheme
[Beam and Warming, (1978)]. When this scheme is used with algebraic turbu-
lence models, the usual practice is to treat both laminar and turbulent trans-
port properties as locally constant over a time step AT, and then to update
these quantities at the end of the step. Details of the implicit scheme
applied in this fashion in curvilinear coordinates are given in [Pulliam and
Steger, (1980)]. For multi-equation turbulence models such as employed here,
one could solve the entire system of flow and turbulence model equations
directly by the implicit numerical scheme, but this would be both cumbersome
and computationally inefficient. Instead, we invoke a few simple approxima-
tions that do not affect the accuracy of the steady state solutions of inter-
est here, and that both simplify the scheme and improve the computational
efficiency. These approximations and the resulting computational procedure
are described below.

3.1 Flowfield Difference Equations. The flowfield equations depend on the
turbulence model parameters k, 'r only through the eddy viscosity *. As with
algebraic turbulence models, we neglect this dependence to first order by
treating pt as locally constant over a step AT. This allows the flowfield and
turbulence model equations to be solved in tandem, rather than simultaneously.
The flow equations are solved first in the usual way [Thomas and Lombard.
(1979), Pulliam and Steger (1980)] to obtain the time differences AP, AV and
the updated flow variables pn+l, Vh+l, etc. These values then are used in the
subsequent solution of the turbulence model equations by essentially the same
implicit scheme.

3.2 Turbulence Model Difference Equations. We employ the first-order
Euler-implicit time differencing scheme. The time-linearized difference
equations for Eq. (2.11) then can be written in the form

S+ +- R + 6 - (3.1a)

Q - s - RA

a - (jp)n+l, b - a(v' ) n + l , c a( .V )n+l (3.1b)

R P1 6 1 bQ + ~~CQn Re 1[6jTi + 61 T + P±i iT3 + j 61 T41 (3.1c)

T1- DI6jQ, T2 - D26jQ, T3 - D3 tj6jQ, T4 D Pi 6iQ (3.1d)

S- (i-I) , Cj - (J-i)AjC, Aj - AJ- 1 (3.1e)

8
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in which I is the identity operator (matrix) and A is the only unknown. F
Here, we 1,ve employed classical difference operator notation A, 6, P6 with a P%
subscript on each spatial operator to distinguish the direction in which that
operator acts. For example, for a mesh function f the spatial operators
are defined as follows 0

A. n n
- fi+lj fi,J

(f~ +1,j - fizJ(3.2)n n

1f = fi+1/2 - fil/ 2

and A without a subscript represents the forward time difference operator
n+1 n

Af f fl - fin (3.3)

Following [Beam and Warming (1978)], the diffusive cross.-derivative terms
have been treated in explicit fashion in Equation. (3.1). For later reference, -

we note that difference equation (3.1a) does not contain artificial smoothing
terms.

To simplify the solution of the difference equations (3.1), we perform an
approximate factorization of the implicit L.H.S. operator into three parts.
Two of these are the usual one-dimensional factors for each coordinate
direction, and the third involves only the source-term Jacobian matrix dS/dQ.
The factored-operator form of Equation (3.1) is

a~ul

[I+A'r(Pi 8jbI -~la ip Q A RAt C.

(I +A- JcI -l 61 at* (3.4)

[aI + A, a*

I,,

91



The implicit operator inversion sequence thus involves two successive
block-tridiagonal matrix inversions, one for each spatial direction, followed
by a block-explicit matrix inversion locally at each grid point, where each
block has only a dimension of 2. In each of the spatial block-tridiagonals,
the two equations (for the two components of Q) are coupled only through the
turbulent viscosity pt. The block-tridiagonal then is reduced to a set of two
easily-inverted scaler tridiagonal equations upon approximating Pt as locally
constant over a time step, which is the same approximation employed in treating
the flow equations themselves. Note that this approximation also renders the
diffusion terms T1 and T2 linear in Q, and their Jacobian matrices take the
simple form

Z1 n ZT2 n
D-"0- D2  (3.5)

Numerical experiments have revealed that the described algorithm for the
turbulence model equations is both stable and accurate in regions where the
turbulence level is significant, such as in a boundary layer, shear layer, or
jet mixing layer. However, numerical difficulties, usually in the form of
slightly negative values of the turbulence energy k, often arise in low-
turbulence regions where pt in Equation (2.1) is insignificant. An example is
the approximately uniform near-freestream flow region radially far from the
missile afterbody wall in Figure 3.1, where k and pt are very small. These
difficulties have been overcome by employing upwindrather than central dif-
ference operators in the advective terms involving V on both right-hand and
left-hand sides of the difference equation (3.4). The implementation for the
turbulence model equations follows that described in [Reklis and Thomas
(1981)] for the Euler equations.

3.3 Boundary Conditions. Boundary conditions for the flow variables and ,1
turbulence model parameters at the various boundaries depicted in Figure 3.1
were determined and applied as described below.

Implicit boundary conditions at the outflow plane and at the symmetry axis 1' 
were computed as described in [Thomas and Lombard (1979)]. The remaining
boundary conditions were applied in explicit fashion; that is, they were main-
tained as locally constant over a time step and then updated at the end of the
step. No-slip adiabatic wall boundary conditions were used at the missile
sidewall and along the solid part of the base. The pressure and temperature
at each grid point along the wall were updated by setting them equal to the
values at the adjacent interior point. Boundary conditions for the two tur-
bulence model parameters are not applied at the wall, but at the edge of the
near-wall region within which the algebraic eddy viscosity model (2.8) is
used. The edge of the near-wall (y+Pl5). Boundary values of k and r at the
edge were obtained from the dual requirement that pt be continuous and that k
be in local equilibrium, as explained earlier.

Boundary conditions at the inflow boundary and shock were derived from
independent numerical solutions for the external flow over the missile

10
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forebody and for the internal nozzle flow, and were held fixed during the
baseflow computation. The forebody flow solution was computed with a 2-D axi-
symmetric flow version of the LVIS (Lockheed Viscous Implicit Solver) program
described in [Reklis, Conti, and Thomas (1983)]. The shape of the outer bow
shock wave and the flow conditions at the shock were obtained from the same
solution for a fictitiously lengthened body extending to the outflow plane of
Figure 3.1.

Inflow boundary conditions at the nozzle exit were obtained from a
Navier-Stokes internal flow solution using the NOZL3D code [Thomas (Sept.,
1979) and (1980) and Thomas and Neier (1980)] in a recent version that includes
an axisymmetric flow option. The geometry of the nozzle is shown in Figure
3.2, along with the curvilinear grid used from the NOZL3D code solution.
Plots of selected exit-plane flow profiles from the latter solution are
displayed in Figures 3.3 to 3.5 to demonstrate the significant radial nonuni-
formity of the jet produced by this particular nozzle. For example, the exit-
plane pressure is about 20 percent higher at the axis of symmetry than at the
nozzle lip. In these figures, the radius z is normalized by the nozzle exit
radius; pressure and temperature are normalized by the corresponding stagna-
tion chamber conditions, and velocities by the stagnation sound speed.

The described numerical solutions for the external forebody flow and the
internal nozzle flow employed the Baldwin-Lomax turbulence model (Baldwin and
Lomax, (1978)]. Because this model is algebraic, it cannot directly yield
inflow boundary conditions on the turbulence model parameters k and r. It was
necessary to derive the latter boundary conditions with the same technique
described earlier for determining the values of k and r at the edge of the
near-wall region of the boundary layer. In the case of the inflow boundary,
the known value of t from the Baldwin-Lomax model and the assumption that k
be in local equilibrium at each point allow deduction of local values for k
and r. This procedure made it necessary to employ Equation (2.10) for the
damping factor exponent, which is consistent with the Baldwin-Lomax model, in

order to ensure continuity of the k and r distributions in the neighborhood of
the inflow boundaries.

The same approach was.used to derive boundary conditions for k and r at
grid points just Inside the bow shock boundary.
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4. RESULTS OF TEST CASES

4.1 General. The test cases computed consisted of verification of the
turbulence models in a boundary layer, and simulation of the flowfield
corresponding to the AEDC wind-tunnel experiments. In order to make this a
true prediction, the results of the AEDC measurements have not been released
as of this writing; comparison of the present results with that data will be
made by MICOM in the future.

Computations were made on a VAX 11/780 minicomputer and CRAY is mainframe.
The same code (with minor modifications) was used in both computers, and on
occasion the computation was moved from one computer to the other for opera-
tional convenience. Many of the runs were of experimental nature, and the
cumulative running time was not computed. The running time of a "production"
run can be estimated by noting that the code runs approximately 17 millisec-
onds per grid point per time iteration on the VAX computer.

I
4.2 Check of Turbulence Models. The correct operation of the turbulence

models was checked by computing the flow in the boundary layer on a cylinder
aligned with the free stream. This case was selected for convenience, since
the base flow code is set up to compute such a flow on the aft section of a
missile. Three runs were made, using the Baldwin-Lomax algebraic model, the
k-epsilon model, and the k-W model, respectively. The parameters used in the
two-equation models (see Table 2.1) were those corresponding to axisymmetric
flow, even though a more faithful modeling of this particular flow should use
the parameters recommended for two-dimensional flows with planar symmetry.
The axisymmetric flow parameters were used because in the computation of base
flows these were the parameters to be used thorughout the flowfield, including
the boundary layer on the side walls of the missile.

All computations yielded essentially the same pressure profile. The
longitudinal velocity profiles are shown on Figure 4.1. The k-W and algebraic .1

models produced essentially the same velocity profile, but the k-epsilon model
gave a fuller velocity profile in the region extending from about 2 percent to
15 percent of the boundary-layer thickness. This behavior was also observed
in the density profiles, shown on Figure 4.2. The turbulent viscosity P
(defined in equation 2.1a) is shown on Figure 4.3. Here again the algebraic
and k-W models agree well, but the k-epsilon model shows significantly larger
viscosity in the region extending from about 3 percent to 42 percent of the
boundary-layer thickness.

The reason for the discrepancies shown by the k-epsilon model remains
obscure, but the general results of these tests indicate that the two-equation
models are operational and yield reasonable solutions. Further judgment on
the performance of these models is beyond the scope of this study.

I
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4.3 AEDC Test'Case

4.3.1 Discretization Grid. The grid used in the computations is shown on
Figure 4.4. This grid was generated using the technique described in [Thomas
(Sept. 1979)], which is based on the solution of a special set of elliptic
differential equations. A computer code (RGRID) that implements this grid
generation technique is provided separately [Thomas and Neier (1980)].

The grid used for the test cases has active 3216 nodes. High resolution
is provided in the boundary layer on the side and base of the missile, and in
the shear layers that separate the jet from the recirculating flow and the
free stream. In order to economize grid points, the resolution was decreased
in the upper region of the flowfield, especially above z-8, which is the upper
boundary of the region surveyed in the AEDC experiments, Therefore, care must
be used in interpreting the computed results in this upper region.

4.3.2 Boundary and Initial Conditions. The boundary conditions are
described in detail in Paragraph 3.3. The inflow boundary conditions on the
afterbody, at x--16, were obtained from a separate forebody solution, and they
match closely the boundary data from the AEDC tests. The inflow boundary con-
dition at the nozzle exit was obtained from a nozzle computation, as discussed
in Paragraph 3.3 and displayed in Figures 3.2-3.5.

The initial flowfield to start the computation was obtained from a laminar
flow solution computed on a coarse, rectangular grid. The turbulence parame-
ters were estimated roughly by interpolation of their boundary values.

The free-stream parameters used in both the k-epsilon and k-W solutions
were as follows:

Mach number-l.343

Reynolds number-92320

Prandtl number-0.7

Ratio of specific heats-1.4

Static temperature-265.3 K.

The values of the constants used in the turbulence models are given in Table
2.1.

4.3.3 Time-Asymptotic Convergence. The code was run with the k-W model
from the initial conditions to a dimensionless time (see definition in
Paragraph 2.1.2) of approximately 28, until no appreciable changes occurred in
the flow variables throughout the flowfield. Then the k-epsilon model was
run, using as initial conditions the k-W solution as a dimensionless time of
approximately 8. The k-epsilon solution was run to a dimensionless time of
approximately 23, which is roughly equivalent to the age of the k-W solution,
because of its later starting point. This solution was also converged, in the
sense that no further changes were observed in the flow variables.

18
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4.3.4 Computed Flowfield. The k-W solution will be discussed first. The
flow variables are nondimensionalized as described in Paragraph 2.1.2; in
particular, the coordinates are referenced to the nozzle exit radius. Figure
4.5 shows the general structure of the flowfield, as indicated by velocity
vector plots. The nozzle exit extends from the centerline (z-0) to z-1; the
base of the body extends to z-5. The near wake exhibits a recirculation
region, which extends longitudinally to approximately x-6. Within it there is
a dividing streamline that separates the upper and lower recirculating flows,
with a stagnation point on the base of the missile at approximately z-2.9.
The shear layers that separate the slow wake flow from the jet and the exter-
nal stream are clearly visible in Figures 4.5(a), (b), and (c), which
illustrate their evolution and merging along the wake.

Two minor anomalies remain unexplained: the notch in the velocity profile
on the jet side of the shear layer, particularly visible in Figure 4.5(a); and
the velocity defect on the axis of symmetry, which may be related to the
axial-symmetry boundary condition.

Dimensionless pressure and density contours are shown in Figures 4.6 and
4.7, respectively. The density contours demarcate clearly the "edge" of the
jet, as Figure 4.7 shows.

The k-epsilon solution is very similar to the k-W one. Figures 4.8(a),
(b), and (c) show the velocity vector plots, and Figures 4.9 and 4.10 show the
pressure and density contours, respectively. One difference with the k-W
solution is that the k-epsilon recirculating region is shorter by about one
nozzle exit radius. Other differences are the greater width of the k-epsilon
shear layers, and the more nearly linear velocity profile of its jet, particu-
larly downstream. These differences are consistent with the larger eddy vis-
cosity predicted by the k-epsilon model, as illustrated by Figure 4.11, which
shows profiles of the turbulent viscosity {mu sub tee} at two axial stations.

The computed results discussed in this section are available on magnetic
tape, both on the original grid described in Paragraph 4.3.1 and on the grid

surveyed in the AEDC wind-tunnel tests.

19 %



7.0

Z

0.0 0.2 0.4 0.6 0.8 1.0 I1.2 1 .4

2 1 ARE2 0 3

Figure 4.1I. Comparison of cotnouted boundary layer velocity profiles for

three turbulence models: (1) Baldwin-Lomax algebraic model,
(2) k-epsilon model, (3) k-W model.

20

11~



7.0

8.0

0.80 0.85 0.90 0.95 1.00
R/REF 0• 2 0 3 X l O "

Figure 4.2. Comparison of computed boundary layer density profiles for
three turbulence models- (1) Baldwin-Lomax algebraic
model, (2) k-epsilon model, (3) k-W model. "'

21

Id,

% %%

le e
.610 - .0



7.0

5.1'p.'

0.0 4010 80.0 120.0 1 a0.0 200.0
, TURM

3p

7.2

Figure 4.3. Comparison of coMputed boundary layer turbulent eddy viscosity ."

profiles for three turbulence models: (i)_Baldwin-Lomax
algebraic model, (2) kyepsilon model, (3) k-W model.

22

zP

°"

..,:,' .,' ," .'-"- -""- "'- " " '-.-:-,,,.".--".". ,".". ."'v<' ",",-,"--'."-".',..t-.z -,- "-:'.''.vv..'..""



20.C

12.C

RESEW

0'.0 4.0 8.0 12.0 16.0 20

x

Figure 4.4. Curvilinear grid used in base flow numericalsimulations.

23

%1



ALP~= 'OCC IT= 9519 TA'-,= 27.ES4

6.0

5.0

6.0

, 
b.

~ .,P40 °

2.,

1.0

8W

1/.0 
(p

0.0

0.0 1.0 2. 3 0 4 0 5 0 - "

Figure 4.5(a). Velocity vectors in region downstream of base,
k-W turbulence model.

24

VA * ~ .n * "V V~J~4. A~* p ~ ,4/.~'. V./ '\* ". "'A. 8(% *A



I%

ALP= 0.00 ;T= 9519 TA = 27.85-4
FILE=KW

8.0

7.0 4

6.0.

5.0.

3.0.

0

2.0/

- S

7.0 0 " '

1.0

7.0 8.0 9.0 10.0 1,1.0 12.0 13.0 14.0 .5.0

Figure 4.5(b). Velocity vectors in region downstream of base,

k-W turbulence model. ,

25

i*.

-.-- -



ALP= 0.00 IT= 9519 TA t 2"7.,-=5-
FILE- KW

8.0

7.0 jS
6.0

Z 4.0 - -

3.0

2.0 -

1.0. - -i

G.9a

13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.C

x

Figure 4 .5(c). Velocity vectors in region downstream of base,
k-W turbulence model.

26



20.0

a.

.a.

ALP= 0.00 T= 9519 TAU= T 5-
PRESSURE R-ILE=KW

20.0

18.0-

14. u

2.2

10.S.

6.aa

.

2.0.

Figure 4.6. Pressure contours in base flow region,
k-W turbulence model.

27 '

A



20.~

18.0-

06.0 20 40 60 80 1. 2 40 1. ~2 2.

14.0-

6..

Figure 4.7. Density contours in base flow region, 10

k-W turbulence model.

28



ALP= 0.00 IT=-- 9195 TAU= 23.2211

8.0

6.0- ,... ,..
4.0p

A03.0L P. 0 . 0 T92 .

2.0

7.0 
-

0.0 -

00 1.0 2.0 3.0 4.0 5,0 G,0 7,0 8.0

S

Rv

Figure 4.8(a). Velocity vectors in region downstream of base,

k-epsilon turbulence model.

29

-. '. ''' .- , ; ""0 ,' , .- '.- .,: --. U- -



ALP=-- 0.00 IT= 9195 TAU= 23.72
FIE.=K E

7.0

5.0

4 4

3.0

2.0

1.0

7.07 LI

7.0 -40 -4 00 1. 20 -. 40 1.

xL

Figure 4.8(b). Velocity vectors in region downstream of base,

k-epsilon turbulence model.

3.

L. 
-4N a e

-% 4



ALP= 0.00 IT= 195 TAU= 23.22.
FILE=KE

8.0

7. 0

6.0

5.0.

4.0

3.0.

2.0 ----%..

1.0 /

13.0 14.0 15..0 16.0 17.0 18.0 19 0 20.C 21. *t-tl

xS

Figure 4.8(c). Velocity vectors in region downstream of base,

k-epsilon turbulence model.

31"

- - 9



1

S

AL -- 0.CC T 9'_ TAlL= 2L_
PRESSURE FILE=KE

20.0

8.0-

16.0'

14. 0

2./

.01

0.0 2.0 4,0 6 D .C '10 2 01, ' J SJ

x

Figure 4.9. Pressure contours in base flow region,
k-epsilon turbulence model.

32



20.0-

18.0-

12.0-

8.C>,

2-0A

0.0 2.0 4 0 6.0 8.0 10.0 1 CN 1 4.0) 16 0 1

Lx

Figure 4.10. Density contours in base flow region,
k-epsilon turbulence model.

33



5.f

I

S4.0

2.o;

0.,,

0.0 500.0 1000.0 1500.0 2000.0 2500.0

+ TURM

Figure 4.11[. Comparison of radial profiles of turbulent eddy viscosity

at axial station X=6: () k-epsilon model, (2) k-W model.

34

B'.C

oa).
r , . ,€;-':-' ' '" ' .' ' --'€'''% ':€ ;4 '' - '." ' ',. ""'.'.""",''"""'"-".,",, "" ,V'.'.''. '.'



REFERENCES

Anon., "Analysis of the Axisymmetric Base Pressure and Base Temperature
Problem with Supersonic Interacting Freestream-Nozzle Flows based on the Flow
Model of Korst, et al.," Parts I-III, MICOM Reports RD-TR-69-12 through
RD-TR-69-14, U.S. Army Missile Command, Redstone Arsenal, Ala., 1969.

Arora, R., Kuo, K.K., and Razdan, M.K., "Near-Wall Treatment for Turbulent
Boundary Layer Computations," AIAA J., Vol. 20, No. 11, Nov. 1982, pp.
1481-1482.

Baldwin, B.S., and Lomax, H., "Thin Layer Approximation and Algebraic Model
for Separated Turbulent Flows," AIAA Paper No. 78-257, 16th Aerospace Sciences
Meeting, Huntsville, Ala., Jan. 1978.

Beam, R. and Warming, R.F., "An Implicit Factored Scheme for the Compressible
Navier-Stokes Equations," AIAA Journal, Vol. 16, No. 4, April, 1978, pp.
393-402.

Chien, K.Y., "Predictions of Channel Boundary Layer Flows with a
Low-Reynolds-Number Turbulence Model," AIAA J., Vol. 20, Jan. 1982, pp. 33-38.

Deiwert, G.S., "A Three-Dimensional Afterbody/Exhaust Plume Navier-Stokes
Code," Proceedings, JANNAF 13'th Plume Technology Meeting, Houston, Texas, ':

April, 1982.

Deiwert, G.S., "Numerical Simulation of Three-Dimensional Boattail Afterbody
Flowfields," AIAA J., Vol. 19, No. 5, May, 1981, pp.582-588.

Jones, W.P., and Launder, B.E., "The Prediciton of Laminarization with a I-

Two-Equation Model of Turbulence," Int. Jour. of Heat and Mass Transfer, Vol.
15, 1972, pp. 301-314.

Launder, B.E., and Spalding, D.B., "Mathematical Models of Turbulence,"
Academic Press, London and new York, 1972.

Mace, A.C.H., Markatos, N.C., Spalding, D.B., and Tatchell, D.G.,
"Computational Analysis of Combustion in Recirculating Flow for Rocket
Exhausts in Supersonic Streams," Paper No. AIAA-81-1386, AIAA/SAE/SME Joint
Propulsion Conference, Colorado Springs, Colo. July 1981.

Nietubicz, C.J., Pulliam, T.H., and Steger, J.L., "Numerical Solution of the
Azimuthal-Invariant Thin-Layer Navier-Stokes Equations," Paper No. 79-0010,
AIAA 17th Aerospace Sciences Meeting, New Orleans, La., Jan. 1979.

Pulliam, T.H., and Steger, J.L., "Implicit Finite-Difference Simulations of
Three-Dimensional Compressible Flow," AIAA J., Vol. 18, Nol 2, Feb. 1980, pp.
159-167.

Reklis, R.P., and Thomas, P.D., "A Shock-Capturing Algorithm for the
Navier-Stokes Equations," AIAA paper 81-1021, Proceedings of the AIAA 5th
Computational Fluid Dynamics Conference, Palo Alto, California, June 1981.

35



Reklis, R.P., Conti, R.J., and Thomas, P.D., "Numerical Simulation of
Hypersonic Viscous Flow Over Cones at Very High Incidence," Paper No.
AIAA-83-1669, 16th Fluid and Plasmadynamics Conference, Danvers, Mass., July,
1983. Ap

Spalding, D.B., "A Two-Equation Model of Turbulence," VDI Forsch.-Heft [549],
1972, pp. 5-16. d

Thomas, P.D., "Boundary Conditions for Implicit Solutions to the Compressible
Navier-Stokes Equations on Finite Computational Domains," AIAA Paper 79-1447,
Proceedings of the AIAA 4th Computational Fluid Dynamics Conference,
Williamsburg, Va., July, 1979.

Thomas, P.D., and Lombard, C.K., "The Geometric Conservation Law and its
Application to Fluid Dynamic Computations on Moving Grids," AIAA Journal,
Vol. 17, No. 10, Oct. 1979, pp. 1030-1037.

Thomas, P.D., "Numerical Method for Prediction Flow Characteristics and
Performance of Nonaxisymmetric Nozzles - Theory," NASA CR-3147, Sept. 1979.

'I.

Thomas, P.D., "Numerical Method for Predicting Flow Characteristics and
Performance of Nonaxisymmetric Nozzles. Part 2 - Applications," NASA CR-3264,
October 1980. 5

Thomas, P.D., and Neier, K.L., "User's Guide for the NOZLJD and NOZLIC
Computer Programs (Core Memory Resident Versions)," NASA Contractor Report
LMSC-D767057, October, 1980.

k.

36

1

AA JO A ~N\~. V..Y%§, A., *~.*/~&



DISTRIBUTION

No. of
Copies

US Army Materiel System Analysis Activity
ATTN: AMXSY-MP 1
Aberdeen Proving-Ground, MD 21005

IIT Research Institute
ATTN: GACIAC 1
10 W. 35th Street
Chicago, IL 60616

AMSMI-RD, Dr. McCorkle 1
Dr. Rhoades I

-RD-SS-AT 20
-RD-CS-R 15

*-RD-CS-T 1
-GC-IP, Mr. Fred M. Bush I

DIST-1/ (DIST-2 blank)



r4s

otr

I / / IS


